STAR Physics at RNC

Nu Xu

Nuclear Science Division
Lawrence Berkeley National Laboratory

- (1) Introduction
- (2) Selected recent results
 - partonic collectivity, coalescence, di-jets
- (3) Plan for FY09 11
 - collective velocity, full jet reconstruction, direct radiation

STAR Heavy Ion Physics

- 1) RHIC heavy-ion program
 - Study medium properties and pQCD in hot and dense medium
- 2) RHIC energy scan
 - Search for **QCD** critical point

STAR Detectors

ϕ -mesons from Au+Au Collisions

ssbar fusion $\Rightarrow \phi$ -meson formation!

STAR: Phys. Lett. <u>B612</u>, 81(2005)

The observed strangeness enhancement is NOT due to the Canonical suppression!

STAR: Preliminary

Charm Cross-section

dσ(cc)/dy at RHIC

- Within error bars, N_{bin}-scaling is observed!
- 2) Large systematic uncertainties
- 3) Theory under predict
- 4) dσ(cc)/dy at RHIC:

STAR ~ 2 x PHENIX

5) **HFT upgrade important**

Anisotropy Parameter v₂

coordinate-space-anisotropy

momentum-space-anisotropy

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad v_2 = \langle \cos 2\varphi \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom

ϕ -meson Flow: Partonic Flow

"φ-mesons are produced via coalescence of seemingly thermalized quarks in central Au+Au collisions. This observation implies *hot and dense matter with partonic collectivity* has been formed at RHIC"

STAR: Phys. Rev. Lett. **99** (2007) 112301// * STAR, Duke, TAMU,

Eccentricity Scaling (?)

STAR: PRC, in print, arXiv:0801.3466v1

- ightharpoonup Larger v_2/ϵ_{part} indicates stronger flow in more central collisions.
- \triangleright Clearly, no ϵ_{part} scaling.
- ➤ The observed n_q-scaling does not necessarily mean thermalization.

Di-hadron Correlations at High p_T

Di-hadron correlations results allow quantitative measure for jet quenching ⇒ Parameter for energy loss.

The Ridge: Medium Response

Rich underlying physics: jet, bulk, jet-medium interaction, medium responses,...

N. Armesto et al.; R. Hwa; A. Majumder, et al.; E. Suryak; S. Voloshin; C.Y. Wong

Results Summary

Study medium properties via (i) penetrating probes, jets and heavy flavor; (ii) bulk measurement, collective flow and yields; (iii) multi-particle correlations.

- ⇒ Strong collective flow with partonic degrees of freedom
 - detailed studied underway to extract collective velocity parameters
 - future HFT will help to address issues of thermalization at RHIC
- ⇒ Jet and medium correlations
 - detailed study of three-particle correlations: search for shock wave, determine parameters of the EoS
 - Jet analysis can yield info on the medium, such as qhat, dE/dx

STAR Detector

Blast Wave Fits: T_{fo} vs. $\langle \beta_T \rangle$

200GeV Au + Au collisions

Multi-strange hadrons freeze-out with higher T_{fo} (~ T_{ch}) and smaller $\langle \beta_T \rangle$

- 1) π, K, and p change smoothly from peripheral to central collisions.
- 2) At the most central collisions, $\langle \beta_T \rangle$ reaches 0.6c.
- 3) Multi-strange particles ϕ , Ω are found at higher T and lower $\langle \beta_T \rangle$
- ➡ Future: Map the velocity parameter with multi-strange hadrons. Key for partonic EOS!

Direct Radiation

Di-leptons allow us to measure the direct radiation from the matter with partonic degrees of freedom, no hadronization!

- Low mass region:

$$\rho$$
, ω , $\phi \Rightarrow e^-e^+$
 $m_{inv} \Rightarrow e^-e^+$

medium effect Chiral symmetry

- High mass region:

$$J/\psi \Rightarrow e^-e^+$$

$$m_{inv} \Rightarrow e^-e^+$$

Direct radiation

Search for QCD Critical Point

STAR Beam User Request FY10

√s _{NN} [GeV]	μ _B [MeV]	Rate [Hz]	Goal [Events]	Duration [Days]
5.0	550	0.5		7
6.1	491	1.4	1 M	20
7.7	410	2.7	2 M	20
8.6	385	4	2 M	15
12.3	300	10	5 M	15
17.3	229	25	10M	12
27	151	30	10M	7
39	112	50	10M	6

Key measurements:

- (1) All PID hadron spectra and v₂
- (2) K/π , $<p_T> ...$ fluctuations

Strategy:

- I- From high to low energy: sign for disappearance of high density phenomena
- II- Cover SPS range ($\sqrt{s_{NN}} = 5$ -20 GeV): sign for the onset of de-confinement

Low Energy Test Run (9 GeV)

- 1) ~ 3500 collisions collected
- 2) Gain understanding of triggering issues
- 3) Determine Luminosity: rate ~ 0.6 Hz at 9 GeV
- 4) STAR studying the following:

Particle identification in TPC; total charged multiplicity π - π interferometry, particle ratios; v_1 and v_2

5) Physics ready with 2 - 4 Hz collisions

Ready for Physics at Energy Scan

PID will be significantly extended using TOF

Observables and Advantages

Torrieri

Advantages at STAR:

- Large acceptance: full azimuthal coverage and |y| < 1.0
- Clean particle identification: (TPC, ToF, EMC)
- Acceptance does *not* change with beam energy, systematic errors under control
- High potential for discovery

Future Plan

- (1) Using strange and multi-strange hadron spectra and v₂, map out parameters of collective velocity with partonic dof ⇒ To understand the QGP formation in top energy collisions at RHIC.
- (2) Full jet reconstruction at RHIC ⇒ Extract energy loss parameters
- (3) Utilize full azimuthal coverage of TOF, measure di-electron mass spectrum up to J/ψ mass (≤ 3GeV) ⇒ Study properties of the medium via direct radiations and search for signal for Chiral symmetry
- (4) Perform energy scan down to SPS energy ⇒ Map the QCD phase diagram and search for the critical point.

Milestones

RNC STAR Physics Milestones

	Measurements	Physics
FY 08	200 and 62.4 GeV Cu+Cu collisions ϕ spectra and v_2 analysis J/ ψ analysis in 200 Cu+Cu	
FY 09	 Analysis high statistics FY07 data centrality dependence of v₂ for φ and Ω Feasibility of full jet reconstruction in high-energy nuclear collisions at RHIC PID at high p_T (p_T ~ 15 GeV/c) 	Partonic velocity parameters Color factor effect
FY 10	 First RHIC energy scan starts Analyze ToF data for di-electrons from p+p collisions 	Extract vector meson ρ , ω , ϕ , J/ ψ mass distributions via di-electrons in $p+p$ collisions
FY 11	Analyze energy dependence data Commissioning HFT patches	Search for critical point Calibrate HFT and related simulations